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ABSTRACT: Heterostructures of inorganic halide perovskites with
mixed-dimensional inorganic nanomaterials have shown great
potential not only in the field of optoelectronic energy devices and
photocatalysis but also for improving our fundamental understanding
of the charge transfer across the heterostructure interface. Herein, we
present for the first time the heterostructure integration of the
CsPbBr3 nanocrystal with an N-doped carbon dot. We explore the
photoluminescence (PL) and photoconductivity of the heterostruc-
ture of CsPbBr3 nanocrystals and N-doped carbon dots. PL quenching
of CsPbBr3 nanocrystals with the addition of N-doped carbon dots
was observed. The photoexcited electrons from the conduction band
of CsPbBr3 are trapped in the N-acceptor state of N-doped carbon
dots, and the charge transfer occurs via quasi type II-like electronic
band alignment. The charge transfer in the halide perovskite-based
heterostructure should motivate further research into the new heterostructure synthesis with perovskites and the fundamental
understanding of the mechanism of charge/energy transfer across the heterostructure interface.

Recent advances in all-inorganic halide perovskites have
created a sensation in diverse optoelectronic applications

like photovoltaics, photodetectors, light-emitting diodes, and
lasers.1−10 The high absorption coefficient, wide absorption
range, high photoluminescence quantum efficiencies (>90%),
and long electron−hole diffusion lengths of halide perovskites
make them attractive in these fields.6−17 However, a
diminution in dimensionality from bulk perovskites to
nanocrystals [zero-dimensional (0D)] and other low-dimen-
sional [one-dimensional (1D) and two-dimensional (2D)]
structures has attracted more attention due to their tunable
band gap, optoelectronic properties, etc.18,19

In parallel during the past decade, 2D materials like
graphene, phosphorene, MoS2, and MXenes have attracted
significant attention in optoelectronics due to their layer-
dependent electronic structure and their electronic band gap
that can be tuned by doping.20−25 Recently, mixed-dimensional
nanoheterostructures of different inorganic compounds dem-
onstrate great potential for the discovery of new materials and
properties.1,26−28 The optoelectronic properties, photores-
ponse, and efficient CO2 reduction capability have been
enhanced by the formation of heterostructures between 2D
layered materials (graphene oxide, MXene, and phosphorene)
and CsPbBr3 nanocrystals (NCs).

29−33 The heterostructure of
metal chalcogenide semiconductors like ZnS, CdS, CdSe, PbS,
and PbSe with CsPbBr3 and CsPbI3 NCs exhibited type I or
type II band alignments, which had a tremendous impact on
tuning the photoresponsivity and luminescent properties.34−38

However, the heterostructure integration of CsPbBr3 nano-
crystals with the 0D carbon dots has not yet been explored. 0D
carbon dots (CDs) have unique electrical, optical, and
chemical properties.39−41 By doping with various elements
(e.g., nitrogen, boron, or sulfur), one can modulate the optical
properties of CDs.42 Interestingly, N-doping in CDs produced
electron-accepting trap states, which enhanced the charge
separation as well as quantum efficiency.43−47 Hence, N-doped
CDs have attracted attention in diverse fields such as the
electrocatalytic oxygen reduction reaction,48 light-driven water
splitting,49 and photocatalysis.50

Herein, we have synthesized the heterostructure of CsPbBr3
NCs with N-doped CDs and investigated the charge transfer
between the two systems. CsPbBr3 NCs were anchored on the
N-doped CDs via H-bonding interactions of the −NH2/−
COOH group present in oleylamine/oleic acid ligands on the
CsPbBr3 surface with the functional groups (CO, C−O, O−
H, −NH2, OC−OH, etc.) on the N-doped CDs. N-Doping
forms the trap states below the conduction band of the CDs.
We noted momentous quenching of the photoluminescence of
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CsPbBr3 within the heterostructure systems. To explore the
mechanism of PL quenching in the heterostructure, we have
carried out time-resolved PL spectroscopy and measured the
photoconductivity of the CsPbBr3−N-doped CD device. PL
quenching occurs due to the transfer of an electron from the
conduction band of the halide perovskite to the N-acceptor
state of the N-doped CDs via a quasi type II electronic band
alignment.
CsPbBr3 NCs were synthesized by a solution-based hot-

injection method with Cs oleate and PbBr2 as precursors (see
the Supporting Information).3 The powder X-ray diffraction
(PXRD) pattern of synthesized CsPbBr3 NCs matched well
with the simulated orthorhombic phase (Pbnm) (see Figure
1a). The nearly monodispersed square-shaped morphology of

CsPbBr3 NCs with an average particle size of 15.2 nm can be
visualized in the transmission electron microscopy (TEM)
image (Figure 1c). These nanocrystals of CsPbBr3 are well
dispersed in toluene but unstable in water. To achieve
successful heterostructure integration of CsPbBr3NCs with
0D carbon dots, the challenge was to select a suitable common
solvent as carbon dots can usually be dispersed in aqueous
medium.

Hence, we have synthesized N-doped carbon dots (CDs)
with controlled amino-passivated surfaces, which could be
dispersed in toluene, as well. The N-doped CDs were
synthesized by using a hydrothermal reaction with citric acid
and urea as precursors (see the detailed synthesis in the
Supporting Information). The product of the hydrothermal
reaction was centrifuged at 9000 rpm to remove the larger
particles. Then, the dispersion solution was dialyzed against
distilled water for 24 h. At the end, the final dispersed solution
was vacuum-dried. The PXRD patterns of CD samples show a
broad peak centered at 24.5° (Figure 1b), indicating
disordered graphitic layers [i.e., (002) planes] in the CDs.45

In the Fourier transform infrared spectroscopy (FTIR)
spectrum (Figure S1a), the intensity of the N−H peak at
1572 cm−1 is stronger than that of the CO peak at 1698
cm−1, signifying that the synthesized CDs have more amino
groups on their surface.44 The XPS peaks at 398.2 and 399.4
eV for N 1s shown in Figures S2a and S3c reveal that nitrogen
presents as (C)3−N (sp3) and N−H (sp3), respectively, which
confirms the N-doping in CDs. The N-doped CDs were found
to exist as clusters and have a nearly uniform size distribution
with an average diameter of 10.9 nm (see the TEM image in
Figure 1d).
To form the heterostructures between CsPbBr3 NCs and N-

doped CDs, the toluene-dispersed N-doped CDs with different
concentrations were added to the CsPbBr3 solution in toluene
and the mixture was sonicated at room temperature to induce
anchoring of CsPbBr3 NCs with N-doped CDs. PXRD of the
integrated heterostructure shows the presence of both CsPbBr3
NCs and N-doped CDs (Figure S4). The assembly of CsPbBr3
NCs on N-doped CDs can also be seen from the TEM image
(Figure 1e). The high-resolution TEM (HRTEM) image of
the heterostructure shows the (130) lattice planes of CsPbBr3
NCs with an interplanar distance of 0.259 nm, and (002)
graphitic planes with a 0.32 nm distance for N-doped CDs
(Figure 1f). In addition, we have measured the FTIR spectra of
pure CsPbBr3 NCs and the heterostructure of the CsPbBr3
NC−N-doped CD system (Figure S1b,c). The FTIR of
CsPbBr3 NCs is dominated mainly by the νC−H (∼3000 cm−1),
νCO (∼1715 cm−1), νN−H (∼3139 cm−1), and νCOO− (∼1407
cm−1) modes of oleylamine and oleic acid (Figure S1b).51−53

Formation of the heterostructures between CsPbBr3 NCs and
N-doped CDs is possibly due to the H-bonding interactions of
the −NH2/−COOH group present in oleylamine/oleic acid
capping ligands on the surface of CsPbBr3 NCs with the
functional groups (CO, C−O, O−H, −NH2, OC−OH,
etc.) of N-doped CDs. The characteristic shift of the νC=O
mode from oleic acid on CsPbBr3 NCs (1713 cm

−1) to a lower
wavenumber of 1706 cm−1 in the CsPbBr3−N-doped CD
heterostructure along with the mode broadening implies the
possible H-bonding interaction in the heterostructures (Figure
S1c). We also performed XPS on CsPbBr3 and the CsPbBr3−
N-doped CD heterostructure, and the results are presented in
Figures S2, S3, and S5. In Figure S3b, we show a slight shift in
the C−O peak for O 1s from 531.0 eV for pure N-doped CDs
to 530.7 eV for the heterostructure. For N 1s, the N−H peak
shifts from 399.4 eV for pure N-doped CDs to 398.95 eV for
the heterostructure (Figure S3c). These slightly smaller shifts
in binding energy are indicative of H-bonding interaction being
present in the heterostructure.54

To visualize further the interaction between the CsPbBr3
and N-doped CDs, first the optical properties of N-doped CDs
were studied using ultraviolet−visible (UV−vis) absorption

Figure 1. Powder X-ray diffraction (PXRD) and TEM images of (a
and c) CsPbBr3 nanocrystals (NCs) and (b and d) N-doped carbon
dots (CDs), respectively. The inset shows the particle size distribution
for CsPbBr3 NCs and N-doped CDs, and the red line indicates
Gaussian fitting. (e) TEM and (f) HRTEM images of the
heterostructure of the CsPbBr3 NC−N-doped CD system. The
white circle (darker contrast) denotes CsPbBr3 NCs with a 0.259 nm
d spacing, and the light contrast region corresponds to N-doped CDs
with a 0.32 nm d spacing.
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and photoluminescence (PL) spectroscopy (see Figure 2). In
the electronic absorbance spectrum of N-doped CDs in an

aqueous solution, we observed an sp2 carbon network band at
∼220 nm (π−π* transition), an absorbance band in the range
of 325−400 nm corresponding to the n−π* transition of C
O, and a shoulder band in the range of 550−620 nm attributed
to the n−π* transition of CN arising from functional groups
present on the surface of N-doped CDs (Figure 2a).47,55 PL
spectra of N-doped CDs slightly vary with excitation
wavelength (from 320 to 400 nm), in which the emission
maximum is red-shifted with an increase in the excitation
wavelength (Figure 2a).39,40,56,57 In addition, the peak width of
PL emission increases with an increase in excitation wave-
length (Figure S6a), which is attributed to the activation of
trap states.58 The N-doping leads to electron-trapping N-
surface states in CDs (below the conduction band), which
increases the high yield of radiative recombination.44,55 Figure
2b shows absorption and PL spectra of CsPbBr3 NCs with an
absorption band peak at 507 nm and band edge emission at
517 nm. The absorption edges estimated from Tauc plots of
the absorption data taken in toluene medium are 2.32, 3.65,
and 4.15 eV for N-doped CDs and 2.37 eV for CsPbBr3
(Figure S6b−d).
Electronic absorbance and PL spectra of CsPbBr3 NCs with

different concentrations of N-doped CDs in toluene are shown
in panels c and d of Figure 2, respectively. The concentration
of CsPbBr3 (1.97 × 10−6 M) is kept constant, and a different
concentration of N-doped CDs is added. The absorbance
retained the feature of CsPbBr3 NCs with the successive
addition of N-doped CDs, while the PL intensity gradually
decreased with a slight blue shift. The formation of the
CsPbBr3 heterostructure with N-doped CDs leads to the
quenching of PL and may be attributed to the transfer of
photogenerated carriers between them. A maximum PL
quenching efficiency of ∼95% was achieved when 92.59 mg

of N-doped CDs per liter was added to a 1.97 × 10−6 M
CsPbBr3 solution.
The nature of the quenching process that leads to the

decrease in PL intensity in general can be governed by various
factors like collision (dynamic quenching), formation of
complexes in the ground state (static quenching), energy
transfer, and charge transfer reaction.29 To understand the
mechanism in this case, we performed the well-known Stern−
Volmer analysis (Figure 3a). The nonlinear nature of the plot

follows the modified Stern−Volmer equation (eq 1), which
shows an upward curvature due to the [Q]2 term in eq 2.

= + [ ] + [ ]
I
I

k k(1 Q )(1 Q )O
S D (1)

= + + [ ] + [ ]
I
I

k k k k1 ( ) Q QO
S D S D

2
(2)

= + [ ]
I
I

k1 QO
app (3)

= + + [ ]k k k k k Qapp S D S D (4)

where IO and I are the PL intensities of CsPbBr3 NCs in the
absence and presence of N-doped CDs, respectively, kS and kD
are the static and dynamic quenching constants, respectively,
and [Q] is the concentration of N-doped CDs.
This upward curvature might be attributed to the presence

of both dynamic and static quenching mechanisms; thereby,
we observe a decrease in PL intensity. Nevertheless, the
measurement of the PL lifetime is more robust than the PL
intensity as it depends on the intensity of excitation and not on
the concentration in the CsPbBr3−N-doped CD hetero-
structure system. Thus, we performed time-resolved PL
spectroscopy. The PL decay of the CsPbBr3−N-doped CD

Figure 2. UV−vis absorption (black) and PL spectra (color) of (a)
N-doped CDs in aqueous medium and (b) CsPbBr3 NCs in a toluene
medium. (c) UV−vis absorption and (d) PL spectra of the CsPbBr3
NC−N-doped CD heterostructure system with variable concen-
trations of carbon dots (12.37−92.59 mg/L) in 1.97 × 10−6 M
CsPbBr3NCs in toluene.

Figure 3. (a) Stern−Volmer plot for PL quenching of CsPbBr3 NCs
in the presence of varying concentrations of N-doped CDs. (b) Time-
resolved PL spectra of 1.97 × 10−6 M CsPbBr3NCs in toluene
medium with different concentrations of N-doped CDs. (c) Stern−
Volmer plot in terms of photoluminescence lifetime of CsPbBr3 NCs
in the presence of N-doped CDs. (d) Modified Stern−Volmer plot
showing the variation of kapp as a function of the varying
concentration of N-doped CDs.
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heterostructure could be fitted with the use of multicomponent
decay kinetics (Figure 3b), and the fitting parameters are listed
in Table S1. The CsPbBr3−N-doped CD heterostructure
decayed relatively faster than pristine CsPbBr3 with the average
PL lifetime decreasing from 111.3 to 12.6 ns upon addition of
a 92.59 mg/L CD solution (Figure 3b and Table S1). This
difference between the τavg of the CsPbBr3−N-doped CD
heterostructure and that of pristine CsPbBr3 indicates the
origin of the nonradiative pathway from the substantial
electronic interaction between CsPbBr3 NCs and π electrons
of N-doped CDs.29 In the case of pure static quenching, the
lifetime should be unaffected in the presence of N-doped CD
quenchers. The slope of τo/τ with [Q] in Figure 3c gives a
dynamic quenching constant (kD) of 0.51 × 104 μL/mg via eq
5.

τ
τ

= + [ ]k1 Qo
D (5)

where τo and τ are the excited state lifetimes of CsPbBr3 in the
absence and presence of N-doped CDs, respectively. We have
further estimated the static quenching constant, kS, to be 1.32
× 104 μL/mg by plotting kapp with [Q] by using eqs 3 and 4
(see Figure 3d).
PL quenching is usually ascribed to either a nonradiative

energy transfer or electron transfer mechanism. During the
nonradiative energy transfer, generally the intensity of the
donor emission decreases and that of the acceptor emission
increases. As one can see in both Figure 2d and Figure S7, both
CsPbBr3 NC and N-doped CD emissions show decreases in
intensity due to the lack of overlap between the emission
spectra of CsPbBr3 and CDs, which rules out the possibility of
energy transfer.29 Thus, photoinduced electron transfer from
the photoexcited CsPbBr3 NCs to N-doped CDs is the
mechanism most likely to be involved in the quenching of the
PL of the CsPbBr3 NC. The photoexcited electrons can be
injected from the CsPbBr3 NC into the N-doped CD as it has
an N-acceptor level. Subsequently, the band gap of CsPbBr3
will decrease a bit, which is observed in the slight blue shift in
PL (see Figure 2d). A similar blue shift of the PL of the
electron donor was previously observed in CsPbBr3−
phosphorene and CsPbBr3−MXene composites.29,32

To understand the electron transfer between N-doped CDs
and CsPbBr3 NCs, we estimated band edges by cyclic
voltammetry as described in the Supporting Information.
The onset reduction potentials were found to be −0.73 and
−0.71 V for N-doped CDs and CsPbBr3 NCs, respectively
(Figure S8). The positions of the VB and CB levels of the
CsPbBr3 are at −6.06 and −3.69 eV, respectively, while for N-
doped CDs, HOMOs are at −7.82 eV (π), −7.32 eV (nCO),
and −5.99 eV (nCN) and the LUMO is at −3.67 eV (π*) (see
Figure 4a). It is well-known that N-doping in CDs introduces
an acceptor state below the conduction band (as shown in
Figure 4a),43,44 which provides a quasi type II-like band
alignment with the CsPbBr3 NC.59,60 Such trap states act as
acceptor centers for electrons from the conduction band of
CsPbBr3.
To understand the charge transfer between the CsPbBr3 NC

and the N-doped CD, we have fabricated a photoconductivity
device. From the current−voltage (I−V) measurement in the
dark and in the presence of light (shown in panels b and c,
respectively, of Figure 4), it is evident that the pure CsPbBr3
NC shows a larger photocurrent enhancement due to the high
absorption coefficient (931 cm−1 g−1 L) compared to that of

the N-doped CD (low absorption coefficient of 22 cm−1 g−1

L), which has almost no photoresponse. In the CsPbBr3−N-
doped CD heterostructure, the photoexcited electrons from
the CsPbBr3 NC are trapped in the acceptor states of the N-
doped CD (as shown in Figure 4a) and it becomes less
available for photoconduction. This is evident from the
decrease in photocurrent with an increase in the concentration
of N-doped CDs (milligrams per liter) in the heterostructure
system (Figure 4b,c).
In summary, we have successfully demonstrated the

heterostructure between CsPbBr3 NCs and N-doped CDs,
which exhibited PL quenching of the halide perovskite. N-
Doping in the CD generated a trap state below the conduction
band. The mechanism of PL quenching of CsPbBr3 is charge
transfer from the conduction band of the perovskite nano-
crystal to the N-acceptor state of the CD arising because of
quasi type II band alignment. The measured photoconductivity
showed that the photocurrent decreases in the heterostructure
system compared to that of CsPbBr3 NCs as the photoexcited
electrons from CsPbBr3 are trapped in the N acceptor in the
N-doped CDs. This work presents the synthesis and
fundamental understanding of the charge transfer mechanism
in the all-inorganic halide perovskite−carbon dot hetero-
structure, which will stimulate further research of new
heterostructures with other halide perovskite and mixed-
dimensional nanostructures.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jpclett.0c02139.

Experimental Section and additional figures and tables
(PDF)

■ AUTHOR INFORMATION
Corresponding Author

Kanishka Biswas − New Chemistry Unit and School of
Advanced Materials and International Centre for Materials

Figure 4. (a) Band energies of CsPbBr3 NCs and N-doped CDs. (b)
Current vs voltage (I−V) for CsPbBr3 NCs with different
concentrations of N-doped CDs under dark and illuminated
conditions measured from −6 to 6 V. (c) Plot of the dark current
and photocurrent of different concentrations of N-doped CDs
(milligrams per liter) in 1.72 × 10−4 M CsPbBr3. The inset shows
the schematic device representation.
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